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B cell depletion via anti-CD20 antibodies is a highly effective treat-
ment for multiple sclerosis (MS). However, little is known about
the maturation/activation stage of the returning B cell population
after treatment cessation and the wider effects on other immune
cells. In the present study, 15 relapsing-remitting MS patients re-
ceiving 1,000 mg of rituximab were included. B, T, and myeloid
cells were analyzed before anti-CD20 administration and in differ-
ent time intervals thereafter over a period of 24 mo. In comparison
to the phenotype before anti-CD20 treatment, the reappearing
B cell pool revealed a less mature and more activated phenotype:
1) reappearing B cells were significantly enriched in transitional
(before: 10.1 ± 1.9%, after: 58.8 ± 5.2%) and mature naive phe-
notypes (before: 45.5 ± 3.1%, after: 25.1 ± 3.5%); 2) the frequency
of memory B cells was reduced (before: 36.7 ± 3.1%, after: 8.9 ±
1.7%); and 3) reappearing B cells showed an enhanced expression
of activation markers CD25 (before: 2.1 ± 0.4%, after: 9.3 ± 2.1%)
and CD69 (before: 5.9 ± 1.0%, after: 21.4 ± 3.0%), and expressed
significantly higher levels of costimulatory CD40 and CD86. T cells
showed 1) a persistent increase in naive (CD4+: before: 11.8 ± 1.3%,
after: 18.4 ± 3.4%; CD8+: before: 12.5 ± 1.4%, after: 16.5 ± 2.3%)
and 2) a decrease in terminally differentiated subsets (CD4+: before:
47.3 ± 3.2%, after: 34.4 ± 3.7%; CD8+: before: 53.7 ± 2.1%, after:
49.1 ± 2.7%).
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Multiple sclerosis (MS) is a chronic inflammatory demye-
linating disease of the central nervous system. T cells have

been considered the major effector cell type in MS, but nowa-
days other immune cells, such as B cells or myeloid cells appear
to be equally important (1). This conceptual shift was substan-
tiated by the success of B cell-depleting anti-CD20 therapies in
MS; the first of these antibodies depleting immature and mature
B cells trialed successfully in relapsing-remitting MS (RRMS)
was rituximab (2, 3), which led to its extended off-label use.
Ocrelizumab, its further humanized successor, has recently been
approved for RRMS as well as for primary progressive MS
(PPMS) (4, 5) based on its ability to drastically reduce the re-
lapse rate in RRMS and to weaken development of disability
in PPMS.
B cells have three main functions in the immune response in

MS: They function as 1) antigen-presenting cells (APCs) (6, 7),
2) immunomodulators through cytokine secretion (8), and 3)
precursor cells for antibody-producing plasma cells (9). The in-
trathecal presence of antibody-producing plasma cells (10) and
of B cell aggregates in the meninges of MS patients (11, 12)
further support an important role of B cells in the pathogenesis
of MS. In the blood, different B cell subpopulations, naive and
memory B cells, are distinguished by their cytokine profile.
Interleukin-10 (IL-10) is almost exclusively produced by naive
B cells; tumor necrosis factor-α (TNF-α) and lymphotoxin (LT)
are largely produced by memory B cells (8). MS patients’ B cells
show an increased secretion of proinflammatory cytokines IL-6

and TNF-α and a decreased secretion of the antiinflammatory
cytokine IL-10 compared to healthy controls (13).
In MS, the B cell phenotype before and at/after repletion

following anti-CD20 therapy and the influence of this depletion
on the remaining immune populations (T and myeloid cells) is
not completely elucidated. This is an important challenge for B
cell-depleting therapies in MS as it may help to determine whether
patients must be continuously depleted of B cells to maintain the
clinical benefit; furthermore, such analysis may elucidate to what
extent it may be necessary to develop a long-term therapeutic
strategy, i.e., a subsequent therapy after anti-CD20 treatment
cessation. To approach these important questions, the phenotype
and function of B, T, and myeloid cells in MS patients treated with
the anti-CD20 antibody rituximab were studied before and over a
24-mo period post treatment.

Results
B Cell Counts and Phenotype before Depletion. We phenotyped
peripheral blood B cells in all patients before treatment initia-
tion. As indicated in Fig. 1 A and B, the B cell pool of all 15
patients contained mainly naive (45.5 ± 3.1%; mean ± SEM) and
memory B cells (36.8 ± 3.1%), yet their relative frequency was
interindividually very heterogenous (Fig. 1 C and D). In order to
investigate whether the individual phenotype correlates with disease
activity or other clinical parameters, patients were stratified accord-
ing to their main B cell population. The ratio of naive/memory
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B cells was used for this approach (Fig. 1 D and E; in memory/
balanced type, ratio ≤ 1; in balanced type, the difference between the
frequencies of naive and memory B cells must not exceed 5%; in
naive type, ratio > 1). Interestingly, the patients’ expanded disability
status scale (EDSS) score positively correlated with the frequency of
naive (Fig. 1F), and negatively with that of memory B cells (Fig. 1G).
There was no correlation of those parameters with age or disease
duration (data not shown). Furthermore, we found a positive cor-
relation between B cell counts and patients’ age, which was driven by
the female population (Fig. 1H). A correlation between B cell counts
and disease duration was not found (data not shown). Despite var-
ious pretreatments with different disease-modifying therapies and
individual patients with a short washout period, the baseline results
showed only minor variations in B cell counts and phenotype.

B Cells Reappear with a Less Mature, yet Highly Activated Phenotype.
In all of our 15 patients, anti-CD20 treatment was effective.
During depletion, only one patient had a relapse (6 mo after
treatment initiation in the absence of a new gadolinium en-
hancing MRI lesion) and another experienced a worsening of the
EDSS 19 mo after treatment initiation. Regarding MRI activity,
two patients had new MRI activity, both in the first 6 mo after
induction of rituximab therapy. One patient had seven new T2
lesions in cranial MRI; the other had one new gadolinium en-
hancing lesion in spinal MRI. Both MRI activities occurred in
complete B cell absence. Conversely, none of the patients with
reemergence of B cells in the blood showed MRI activity. Ac-
cordingly, no association between B cell repopulation and MRI
activity can be deducted from our cohort (Table 1; for detailed
patient treatment regimens, see Fig. 2A). One primary goal of
our study was to analyze the returning B cell phenotype. Phe-
notypically, B cells reappeared very homogeneously in all patients
analyzed, although B cell repletion kinetics varied interindividually
and overall reappearance occurred in different magnitudes (Fig.
2 B and C). Specifically, reoccurring B cells were highly enriched
in transitional B cells (58.85 ± 5.281%) and strongly diminished in
memory B cells (8.9 ± 1.768%). Furthermore, the frequency of
naive B cells was reduced from 45.5% to 25.1% ± 3.5%, while
antigen-experienced B cells and plasmablasts remained un-
changed. Overall, at an early time point in the repletion phase,
B cells had a dominant transitional/naive phenotype (Fig. 3 A–C).
Next, we aimed to compare the activation state and antigen-

presenting potential of reappearing B cells with the preexisting
phenotype before anti-CD20 treatment. B cells before depletion
showed a relatively uniform expression of proliferation and ac-
tivation markers, with a low CD25 and CD69 expression, and a
higher expression of CD95 (FAS). Strikingly, the repopulating
B cells consistently showed a significantly higher expression of
these markers, indicating a more activated status (Fig. 3D).
Along the same lines, the reappearing B cell pool showed an
enhanced expression of CD40 and CD86, whereas MHC class II
and CD80 remained unchanged (Fig. 3 E and F). In conjunction,
these findings point toward repopulating B cells being strongly
activated and having a higher costimulatory potential.

Reappearing B Cells Secrete More IL-6. Reappearing B cells showed
an increase in basal IL-6 secretion compared to B cells before
anti-CD20 treatment, while the frequency of IL-10– and TNF-
α–secreting B cells remained unchanged. Of interest, when
comparing B cells in a stimulated and in an unstimulated state,
B cells before anti-CD20 treatment showed an up-regulation of
their IL-6 secretion, while reappearing B cells already in the
nonstimulated setting showed an elevated IL-6 production (Fig.
3G), which could not further be enhanced by CpG or LPS stim-
ulation (Fig. 3 H and I). These data support the assumption that
reoccurring B cells have a reinforced proinflammatory capacity.

CD4+ and CD8+ T Cells React Alike to Anti-CD20 Depletion with a
Relative Loss in Effector Function. We further analyzed the impact
on the frequency, phenotype, and function of T cells. For this
purpose, we compared four different time points, before deple-
tion, an early time point thereafter, late-stage depletion, and B cell
reappearance (8 to 24 mo after treatment). The total number of
CD4+ and CD8+ T cells did not change significantly upon anti-
CD20–mediated cell depletion (Fig. 4 A and B), nor did their state
of differentiation (Fig. 4 D–K; before depletion vs. early depletion;
after 1 to 5 mo). CD4+ T cell dominance increased, which is
reflected in the significant increase in the ratio between CD4+ and
CD8+ T cells (Fig. 4C). However, when comparing the CD4+

T cell differentiation state before therapy with the time point at
B cell reoccurrence, we observed an increase in naive, central
memory, and effector memory T cell frequencies (Fig. 4 D–F),
while the frequency of terminally differentiated T cells (Fig. 4G)
was strongly decreased. Although less pronounced, similar find-
ings could be observed for CD8+ T cells, except for the frequency
of effector memory cells, which remained unaltered for all time
points investigated (Fig. 4 H–K). In addition to the changes in
T cell maturation, we observed a strong increase in the expression
of the adhesion molecule CD62L by both CD4+ and CD8+ T cells
(Fig. 4 L andM; before depletion vs. at reappearance; after 8 to 24
mo), indicating a higher capacity of these cells to home to sec-
ondary lymphoid organs.

Preexisting B Cell Phenotype Determines T Cell Differentiation
following Depletion and Repletion. Next, we aimed at examining
whether the preexisting B cell phenotype may correlate with differ-
ential changes in T cell maturation. For this purpose, we divided our
cohort as mentioned earlier by the relative dominance of naive
versus memory B cells in the pre–anti-CD20 blood sample (Fig.
1 C–E). When comparing the T cell differentiation before treatment
initiation between these two groups (Fig. 5), we detected a greater
value scattering from patients with a predominantly naive B cell
phenotype before depletion in both T cell subpopulations (CD4+

P = 0.0476; Mann–Whitney U test; CD8+ P = 0.0343; unpaired
t test). Furthermore, patients with a memory/balanced B cell type
revealed in the long term (before depletion vs. at reappearance; after
8 to 24 mo) increased frequencies of naive and central memory
CD4+ and CD8+ T cells, along with an increase in CD62L expres-
sion, and a complementary decrease in frequency of terminally dif-
ferentiated T cells. In contrast, patients with a naive B cell phenotype
showed, with exception of a minor decrease in terminally differen-
tiated, no changes in CD4+ T cell maturation, with minimal changes
in CD62L expression. Patients with a naive B cell type showed the
following changes in CD8+ T cell maturation: decrease in naive and
central memory T cells with a complementary increase in terminally
differentiated T cells, with minimal changes in CD62L expression.

CD14+ Myeloid Cells Show Transient Changes upon Anti-CD20
Antibody Treatment. The total number of monocytes was not al-
tered upon anti-CD20–mediated cell depletion (Fig. 6A). Com-
paring the phenotype of myeloid cells before B cell depletion
and during B cell absence (early depletion; after 1 to 5 mo), the
following changes were found: a nonsignificant increase in CD40
expression, a significant increase in MHC II expression, and
significant changes in cytokine production, i.e., increase in IL-6
and a decrease in IL-10 production. Over the course of B cell
reappearance (at reappearance; after 8 to 24 mo), normalization
of a transiently enhanced CD95 (FAS), CD40, and MHC II
expression and a continuously increasing CD86 expression were
observed. IL-6 and IL-10 normalized, albeit not to original level.
TNF-α production remained unchanged (Fig. 6 B–H). When
looking in greater detail on the unstimulated IL-6 production
(Fig. 6G), one could see that the myeloid cell reaction spreads;
some show over time an increased IL-6 production and some
show a decreased one. Altogether, these observations suggest
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that nonselective, anti-CD20–mediated pan B cell depletion re-
sults in cessation of B cell antiinflammatory regulation of mye-
loid cells, and that myeloid cells overtake the B cells’ APC
function. As the majority of these changes are transient (with the
exception of CD86), one could see the return of B cell antiin-
flammatory regulation of myeloid cells.

Discussion
We here aimed at characterizing the immunological consequences
of anti-CD20–mediated B cell depletion, with a particular focus
on how B cells reappear after their removal and how the absence
and reoccurrence of B cells impact frequency, differentiation, and
activity of T and myeloid cells. These investigations aimed at
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Fig. 1. Individual B cell phenotype before therapy administration. Peripheral blood mononuclear cells were isolated from 15 MS patients before anti-CD20
antibody treatment was initiated (filled shapes, before depletion; n = 15 samples). Depicted are dot plots showing the mean ± SEM. Frequencies (A) and cell
counts (B) of transitional (CD24high CD38high), mature naive (CD27− CD38+), antigen-experienced (=antigen-exp.; CD27+ CD38+), and memory (CD27var CD38−)
B cells as well as plasmablasts (CD20− CD27+ CD38+) pre-gated on CD19+ B cells; frequency of transitional B cells and plasmablasts was gated within the mature
naive respectively antigen-experienced B cells and was calculated to the B cell population. Second, frequency of transitional B cell and of plasmablasts was
subtracted from mature naive respectively antigen-experienced B cells to receive the negative population. (C) Frequency of naive and memory B cells of all
patients divided into two groups based on the naive/memory ratio. (D) Naive/memory ratio of every single patient in an increasing order and (E) mean naive/
memory ratio of all patients, both (E and F) divided into two groups based on the naive/memory ratio (in memory/balanced type, ratio ≤ 1; in balanced type,
the difference between the frequencies of naive and memory B cells must not exceed 5%; in naive type, ratio > 1). (F) Correlation between frequency of naive
B cells before and EDSS score before treatment initiation (linear regression, Spearman r; when n = 15: r = 0.5938, P = 0.0216). (G) Correlation between
frequency of memory B cells before and EDSS score before treatment initiation (linear regression, Spearman r; when n = 15: r = −0.3234, P = 0.2385).
Correlation between B cell counts before first anti-CD20 antibody administration with age (H; n = 14); linear regression, Pearson r.
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unraveling how this extremely effective treatment option will be
used most wisely in the context of a long-term effective MS
therapy regimen. Being able to anticipate in what status B cells
return after anti-CD20 treatment is of particular relevance, since
continuous B cell depletion intrinsically harbors the risk of devel-
oping humoral deficiencies over time, which may require treatment
cessation and even immunoglobulin substitution. In addition, anti-
CD20 treatment may directly or indirectly affect T and myeloid
cells with consequences for follow-up treatment regimens.
In all patients scheduled to receive anti-CD20, we first char-

acterized in detail the target population of peripheral B cells. Of
interest, we noted that MS patients showed a positive correlation
between B cell counts and age. B cell counts in peripheral blood
of healthy individuals increase until the age of ∼26 y of age, and
then stabilize until the age of 50 (14, 15).
When looking at the distribution between the two genders, this

correlation was driven primarily by the female population in-
cluded. This group showed generally a lower B cell count, yet still
within the norm. This is surprising, since in general the B cell
compartment does not show a significant gender specific distri-
bution (15). We thus hypothesize that the observed association
relates to MS or autoimmunity in general. It is known that cer-
tain B cells subpopulations are more frequent in elderly women
with autoimmune disorders than in young women, or men of any
age. At this point, we can only speculate that the observed in-
crease of the B cell counts with increasing age in women relates
to an expansion of the reported B cell population (16).
All MS patients showed two main B cell phenotypes before

treatment, naive and memory B cells. Individual patients yet
differed in the relative composition of these differential B cell
phenotypes. We found in all but one patient a strong correlation
between the naive and memory B cell frequencies and the EDSS
score (which should be interpreted very cautiously in light of

the small number of patients). Furthermore, we detected that
patients with a predominantly memory/balanced B cell phenotype
had a lower EDSS score when compared to patients with predomi-
nantly naive peripheral B cells. This comes as a surprise, as memory
B cells are thought to have a more proinflammatory phenotype (8),
and their increase worsens the clinical activity of MS (17).
In view of these variations within our cohort, B cells repleted

in a surprisingly homogenous manner after cessation of anti-
CD20 treatment. Overall, repleting B cells were less mature,
mostly transitional and also naive. Transitional B cells are the
least mature B cells capable of migrating from the bone marrow
to the periphery (18), suggestive of a de novo repletion from the
bone marrow. The other important observation was that repleting
B cells showed a more activated phenotype when compared to
their phenotype before depletion. This is seen in the elevated
expression of activation markers (among others, CD25), in the higher
expression of costimulatory molecules, and in the cytokine profile,
showing a relative decrease in antiinflammatory cytokine secretion
(IL-10) and an increase in proinflammatory cytokine secretion (IL-
6). CD25 is mostly expressed by memory B cells (19), which contain a
higher frequency of activated, proliferating B cells with enhanced
antigen presentation capacities (20). In context with our phenotypical
analysis above, we do not believe that the higher expression of CD25
is due to an elevated frequency of memory B cells in the repleting
pool, but reflective of the fact that naive, regrowing B cells are being
activated in the process of repopulation. This general observation
confirms our earlier experimental study showing that in the context
of peripheral activation, B cells reappear with an enhanced proin-
flammatory molecular arsenal (21). Jointly, these data point to a shift
toward a less differentiated state, yet with enhanced proliferation,
activation, and costimulatory capacities. Of note, similar results were
also found by analyzing the pool of repopulating B cells after CD20
depletion with rituximab in other autoimmune diseases (22).

Table 1. Characteristics of the patient cohort

Characteristic Study cohort

Number of patients (samples before/depletion/early repletion/late
repletion)

15 (15/12/10/10)

Sex, W/M 8/7
EDSS score at start of the study, median, IQR/range 2.5 ± 3.5
Age at start of study, y, mean ± SD 35.73 ± 8.91
Time since MS diagnosis, y, mean ± SD 10.76 ± 6.31
Observation time after initiation of anti-CD20 treatment, y, mean ±

SD
2.68 ± 0.658

Last treatment before rituximab (cases)
Dimethylfumarate 2
Fingolimod 6
Glatiramer acetate 1
Natalizumab 2
Azathioprine 1
None (i.e., treatment naive) 3
Washout periods, mo, mean ± SD 5.42 ± 4.56

Prior treatments (cases)
Dimethylfumarate 2
Fingolimod 9
Glatiramer acetate 4
IFNβ-1a 6
IFNβ-1b 2
Natalizumab 6
Azathioprine 1
Cortisone (in last 6 mo before first anti-CD20 treatment) 4
None (i.e., treatment naive) 3
Patients with relapses after therapy initiation 1, yet with no MRI activity
Patients with EDSS deterioration after therapy initiation 1, yet after 19 mo since treatment

initiation, without new MRI activity

Nissimov et al. PNAS | October 13, 2020 | vol. 117 | no. 41 | 25693

IM
M
U
N
O
LO

G
Y
A
N
D

IN
FL
A
M
M
A
TI
O
N

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 N
ov

em
be

r 
29

, 2
02

1 



www.manaraa.com

CD4+ and CD8+ T cells reacted alike to anti-CD20 depletion
and showed a relative loss in effector function (13), and a de-
crease in terminally differentiated T cells (the CD4+ larger than
CD8+), an increase of CD4+ respectively constant CD8+ ef-
fector memory T cells. Of note, both T cell populations have the
highest immediate effector functions. In general, these changes
in the T cell compartment may occur as an indirect consequence
of removing B cells. Alternatively, this may be a direct effect, as a
proportion of highly differentiated, cytokine-producing effector
CD4 and CD8 T cells is nowadays known to express CD20 (23,
24), which may lead to their extinction upon anti-CD20 treat-
ment (25, 26). To distinguish between these two possibilities will
be crucial in the future yet exceeded the scope of this pilot study.
Nevertheless, as a first approach in this direction, we correlated
the preexisting B cell phenotype with the effect of anti-CD20
treatment within the T cell compartment. Of note, the patients
with memory/balanced B cell phenotype showed relatively ex-
tended differences in the T cell phenotype upon B cell depletion,
suggesting a loss of T cell stimulation by differentiated B cells
(27). On the other hand, the patients with a naive B cell phe-
notype showed partially opposite changes in the T cell phenotype.
Within the compartment of myeloid cells, pan B cell depletion was
associated with an up-regulated activity of myeloid cells in the
blood. Of note and in contrast to T cells, these changes were not
determined by the preexisting B cell phenotype. Most likely, these
alterations, which confirm our earlier observations in mice (21)

and men (28) represent the concomitant loss of B cell regulatory
properties (29–31), which likely occurs upon nonselective deple-
tion of CD20-positive B cells.
In conclusion, the process of therapeutically removing CD20-

positive cells in patients with MS and related diseases is immu-
nologically more complex than previously thought. Besides un-
selectively removing B cells, anti-CD20 treatment is associated
with profound changes in the T cell compartment as well as with
detectable alterations in the phenotype and function of myeloid
cells. Furthermore, upon cessation of treatment, B cells reappear
in a relatively immature status yet with a substantial incline in the
expression of activation markers and in the release of proin-
flammatory cytokines. This primary observation indicates that
regeneration of B cells after their anti-CD20–mediated removal
is an active process rather than a simple, physiological regrowth
of B cells with the same properties as before. Whether our im-
munological observations lead to clinical reactivation of the dis-
ease remains open. A large observational study did not find
evidence of accentuated disease reappearance in a large patient
cohort (32), while it is possible that individual patients may react
differently. Regarding a possible transition of RRMS patients to
secondary progressive MS, it was shown that rituximab may not
necessarily prevent it (33). This may indicate that anti-CD20 is
extremely powerful in prevention of relapses and de novo lesion
formation, while its effect on secondary progression is question-
able. All analyses provided here are generated from patients
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Wilcoxon matched-pairs signed rank test).
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treated with rituximab, as reoccurrence of B cells is extremely rare
with ocrelizumab due to the usually constant and relatively short
treatment interval. Nevertheless, as rituximab and other anti-
CD20 deplete the identical population of B cells, it is reasonable
to assume that ocrelizumab and ofatumumab might have similar
effects. While it remains to be determined whether this change in
our conception of anti-CD20 is of direct clinical impact, it may be
instructive in the development of sustainable, possibly sequential, B

cell-directed treatment strategies beyond continuous anti-CD20
therapies.

Materials and Methods
Patients. Fifteen RRMS patients were enrolled at the University Medical
Center Göttingen, Germany, after written informed consent; this study was
approved by the ethics committee of the University Medical Center Göttin-
gen (#19/09/10 and #03/04/14). Since rituximab is an off-label treatment for
MS, the number of includable patients at our center was limited to 15. Eight
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Fig. 6. Myeloid cells phenotype and global cytokine analysis before treatment initiation and during the depletion and repletion phases. Peripheral blood
mononuclear cells were isolated from 15MS patients before anti-CD20 antibody treatment was initiated (filled hexagons, before depletion; n = 15 samples), after
1 to 5 mo (thin hexagons, early depletion; n = 12 samples), after 6 to 8 mo (thick hexagons, late depletion; n = 10 samples), and after 8 to 24 mo (filled hexagons,
at reappearance, at B cell reappearance; n = 10 samples). Depicted are dot plots showing the mean ± SEM. (A) Cell counts of monocytes (black hexagons). Myeloid
cells’ expression of CD95 (FAS; B), CD40 (C), and MHC class II (MHC-II; D) shown as mean fluorescence intensity (MFI) (*P < 0.05; Wilcoxon matched-pairs signed
rank test/paired t test; α value was corrected with the Bonferroni–Holm method) as well as (E) frequency of CD14+ myeloid cells expressing CD80 and (F) myeloid
cells’ CD86 expression shown as mean fluorescence intensity (MFI) (*P < 0.05; paired t test). Cells were cultured for 22 h unstimulated (G–I; black hexagons), 22 h in
the presence of CpG (gray hexagons), and for 20 h unstimulated followed by 2 h in the presence of LPS (red hexagons), all followed by four additional 2 h in the
presence of ionomycin, PMA, and GolgiPlug. Flow cytometry analysis of (G) CD14+ myeloid cells’ expression of interleukin-6 (IL-6) shown as mean fluorescence
intensity (MFI) (**P < 0.005; Wilcoxon matched-pairs signed rank test/paired t test; α value was corrected with the Bonferroni–Holm method), frequency of CD14+

myeloid cells’ expressing (H) tumor necrosis factor-α (TNF-α) and (I) IL-10 (**P < 0.005; paired t test).
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females and seven males were included; their mean age was 35.7 y, mean
disease duration was 10.7 y, and median EDSS score was 2.5. For detailed
patient characteristics, see Table 1. All patients received rituximab at a dose
of 1,000 mg on days 1 and 15, followed by 1,000 mg every 3 to 15 mo. For
detailed patient treatment regimens, see Fig. 2A. Blood samples were col-
lected during routine clinical assessment before anti-CD20 antibody treat-
ment and at several time points thereafter. Immune cell counts were
determined from whole blood in the hospital’s routine laboratory. Detailed
descriptions of study materials and methods are provided in SI Appendix, SI
Materials and Methods.

Data Availability. All study data are included in the article and SI Appendix.
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